
Réunion publique du 5/04/2017

Construire un plan de gestion

VERS UN PLAN DE GESTION

- \triangle Trois phases : Diagnostic \rightarrow Orientations de gestion \rightarrow Plan de gestion
- Une étude pour comprendre fonctionnement et dysfonctionnements des cours d'eau
- △ Cette compréhension permet de se **projeter sur le long terme**
- A Rechercher les données nécessaires pour construire le plan de gestion
- △ Comprendre permet d'engager une gestion croisant **enjeux** et **fonctionnement** du cours d'eau
- A Prendre le **temps de la connaissance** pour s'engager aujourd'hui et pour le futur
- Le plan comprendra des actions immédiates et des actions à long terme
- △ Démarrer un plan de gestion pour le long terme impose un suivi (évaluer pour évoluer = s'adapter)

La méthode

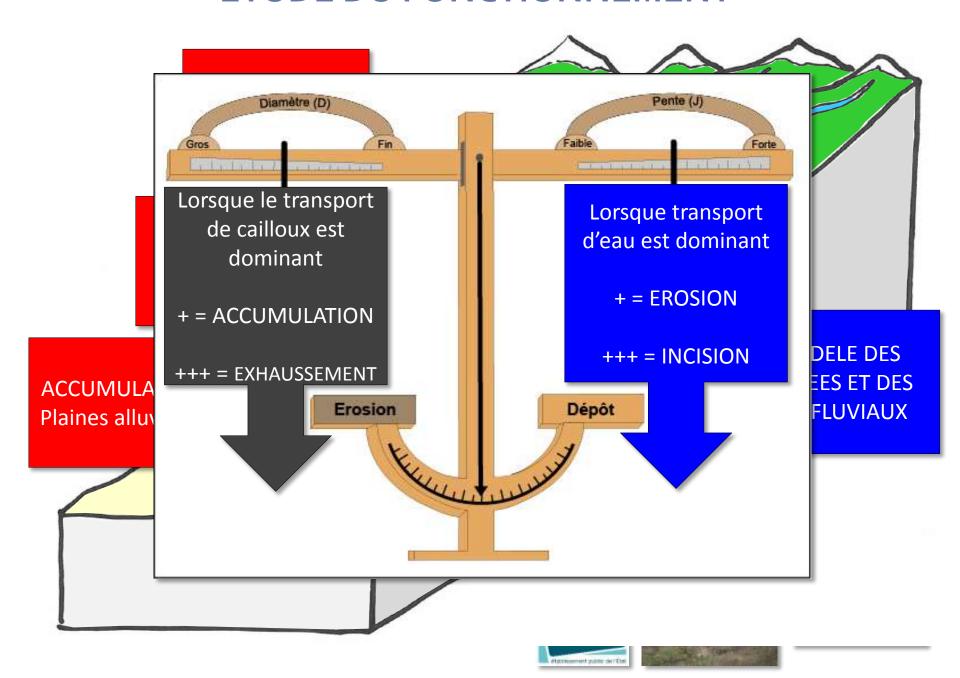
DES ACTIONS MULTIPLES POUR UN DIAGNOTIC COMPLET

- Analyse bibliographique
- Entretien avec des personnes ressources du territoire
- Archives départementales
- Relevés de terrain
- Levés topographiques profil en long depuis la confluence avec le Ribeyras, et profils en travers (Escoutay et affluents)
- Levés topographiques par drone (MNT et orthophotographie)
- Analyse de profils en long et photographies aériennes
- Analyse de ces éléments complétés par une approche calculatoire du transport solide
- △ Comprendre la fourniture sédimentaire moteur de la dynamique fluviale

Un équilibre entre érosion et dépôt?

LA RIVIERE CETTE MECONNUE QU'ON CROIT CONNAÎTRE

- Les versants et les têtes de bassins produisent des matériaux(érosion)
- Ces matériaux sont transportés vers l'aval (transport solide)
- Les **crues** fonctionnent par à-coup (**déstockage**), en particulier les crues cévenoles
- La rivière évacue sa **charge grossière** au gré des crues
- Les **apports en matériaux** sont le **moteur** de la construction des lits fluviaux
- ▲ L'équilibre dynamique peut s'emballer (érosion ou dépôt ?)
- La rivière est une banque à cailloux : budget sédimentaire + stockage déstockage
- ▲ Trop de matériaux = accumulation, pas assez de matériaux = déstockage = incision
- △ Un équilibre fragile sous l'emprise des variations du climat (forçage climatique)
- ▲ L'Homme y a laissé son empreinte (forçage anthropique)



ETUDE DU FONCTIONNEMENT

ETUDE DU FONCTIONNEMENT

Focus sur le terrain

SUR LE TERRAIN QU'EST-CE QU'ON CHERCHE?

Les ouvrages qui perturbent le transport solide

Focus sur le terrain

SUR LE TERRAIN QU'EST-CE QU'ON CHERCHE?

- Les ouvrages qui perturbent le transport solide
- Les contraintes latérales du lit

Focus sur le terrain

SUR LE TERRAIN QU'EST-CE QU'ON CHERCHE?

- Les ouvrages qui perturbent le transport solide
- ▲ Les contraintes latérales du lit
- Les érosions
- La connexion entre les versants et le lit

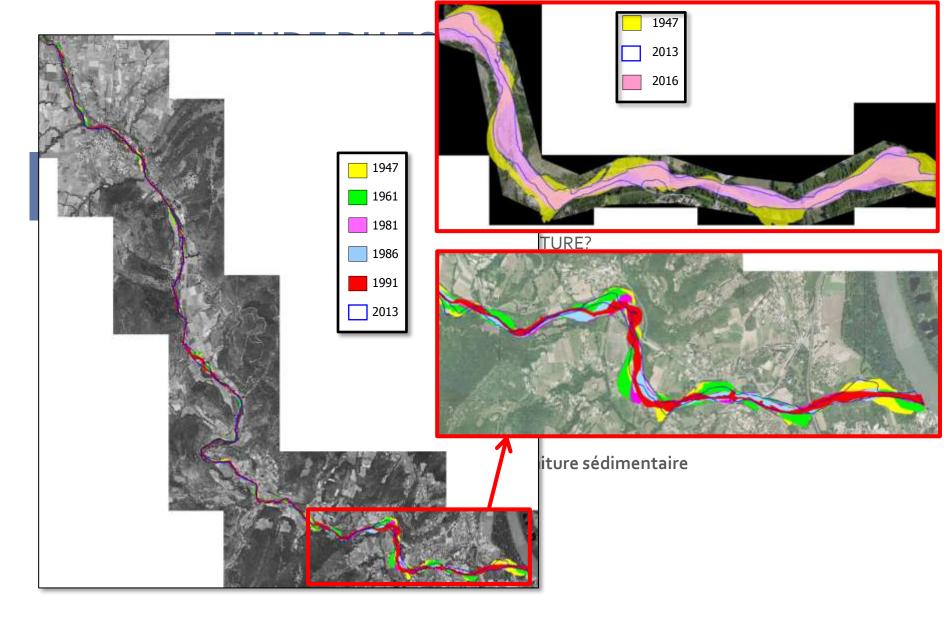
Focus sur le terrain

SUR LE TERRAIN QU'EST-CE QU'ON CHERCHE?

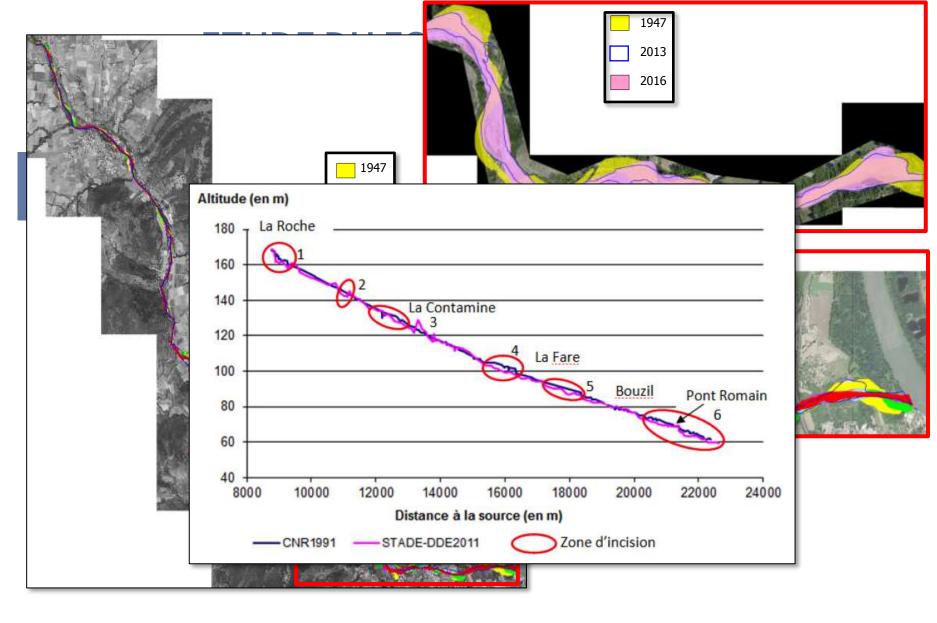
- Les ouvrages qui perturbent le transport solide
- Les contraintes latérales du lit
- Les érosions
- La connexion entre les versants et le lit
- Les alluvions présentes en lit (sous la forme de bancs de galets)

che DARTEMENT

Les analyses du lit


L'HISTOIRE DU LIT POUR COMPRENDRE SON EVOLUTION FUTURE?

- △ Comment ? On utilise photographies aériennes et **mesures d'altitudes du lit** du cours d'eau existant en les comparant
- \wedge On étudie l'évolution verticale $\uparrow \downarrow$ et l'évolution latérale \leftrightarrow du lit
- Verticale : incision ou exhaussement ? Pas assez ou trop de matériaux ?
- Latérale : expansion ou contraction ? Trop ou pas assez de matériaux ?
- On analyse les extractions de matériaux... soustrait au stock alluvial
- ▲ L'histoire du lit nous donne ainsi des indications sur la fourniture sédimentaire



Le diagnostic – l'héritage du passé

LES ELEMENTS HERITES

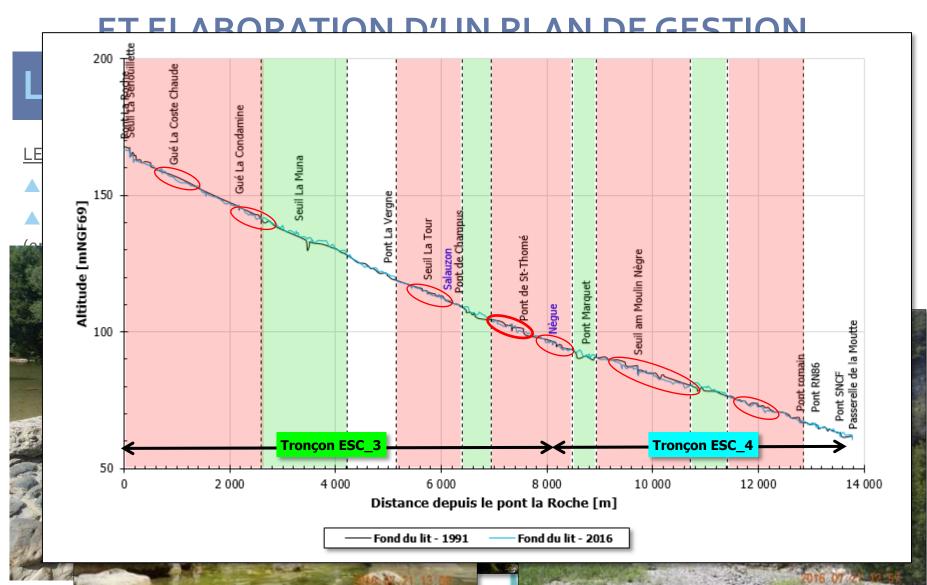
- ▲ La modification du climat (FORCAGE CLIMATIQUE) lié au réchauffement depuis 1850
- Le transport solide est **PERTURBE** par des seuils (11 majeurs) et s'écoule sur 144 affleurements rocheux (entre Ribeyras et pont de la Roche) = **incision**, mais pas de barrage
- △ 30 % du linéaire lit est **CORSETE** par des protections de berge (4 170 m) et des falaises (2 222 m) ce qui est assez important (**recharge sédimentaire** limitée)
- Les **EXTRACTIONS** de matériaux (construction) depuis le début du XXème (l'Escoutay a fourni des matériaux pour construire la RN 86 en 1932. Entre 1995 et 2008 : 8 500 m³ ont été extraits)...
- L'EVOLUTION LATERALE montre une zone de divagation en crue (bande active) qui s'est globalement rétractée depuis 1947
- L'EVOLUTION VERTICALE présente des zones en incision depuis 1991 (Saint-Thomé, Alba-la-R., entre moulin Nègre et le pont Romain...), incision liée essentiellement au forçage climatique

Le diagnostic – l'héritage du passé

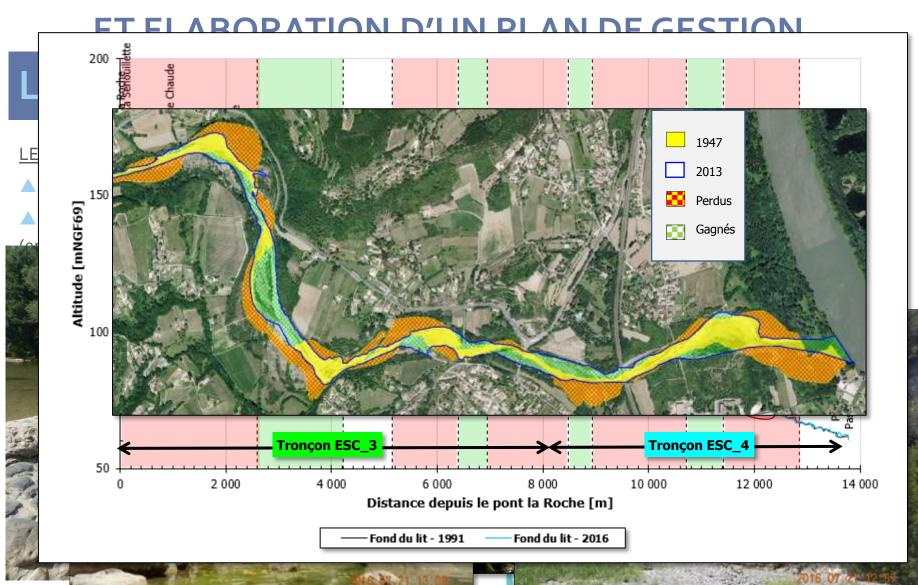
LES ELEMENTS HERITES

- ▲ La modification du climat (FORCAGE CLIMATIQUE) lié au réchauffement depuis 1850
- Le transport solide est **PERTURBE** par des seuils (11 majeurs) et s'écoule sur 144 affleurements rocheux

Le diagnostic – l'héritage du passé


LES ELEMENTS HERITES

- ▲ La modification du climat (FORCAGE CLIMATIQUE) lié au réchauffement depuis 1850
- Le transport solide est **PERTURBE** par des seuils (11 majeurs) et s'écoule sur 144 affleurements rocheux (entre Ribeyras et pont de la Roche) = **incision**, mais pas de barrage
- △ 30 % du linéaire lit est **CORSETE** par des protections de berge (4 170 m) et des falaises (2 222 m) ce qui est



ETUDE DU FONCTIONNEMENT HYDROMORPHOLOGIQUE DU BV DE L'ESCOUTAY

ETUDE DU FONCTIONNEMENT HYDROMORPHOLOGIQUE DU BV DE L'ESCOUTAY

Le diagnostic – Le fonctionnement actuel

ETAT DU VOLUME DE MATERIAUX (LA RECHARGE SEDIMENTAIRE): ORIGINE DES ALLUVIONS EN LIT

- La **CONNEXION VERSANT-LIT** est assez limitée (végétalisation limitant l'érosion)
- Les AFFLUENTS, CONTRIBUTEURS EN MATERIAUX sont de deux ordres :
 - Torrents basaltiques faibles contributeurs: Ribeyras, Vernet et Téoulemale forte pente mais matériaux résistants
 - Rivières torrentielles calcaires bons contributeurs: Salauzon et Dardaillon-Nèque puissance moins importante mais roche plus facilement érodables
- Les SURFACES D'EROSION sont concentrées en aval d'Alba-la-Romaine
- Les BANCS DE GALETS (313 pour un volume de 615 000 m³) sont concentrées en aval du pont de la Roche (95 %) dont 59 % en aval de la confluence avec la Nèque (bande de stockage active). Ces bancs de galets sont mobiles (61 %)
- L'Escoutay présente une bonne capacité de transport de matériaux grossiers

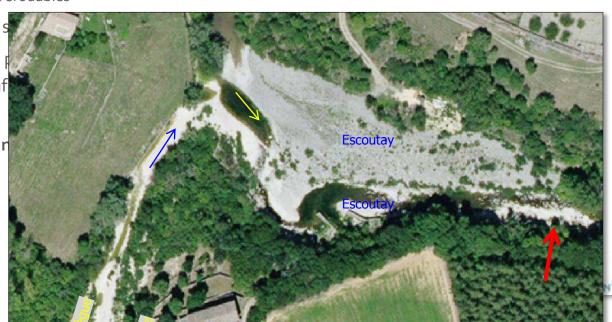
ETUDE DU FONG HYDROMORPHOLOGIQU ET ELABORATION D'U

Le diagnostic – Le fonct

ETAT DU VOLUME DE MATERIAUX (LA RECHARGE SE

La CONNEXION VERSANT-LIT est assez limitée (vé

Les AFFLUENTS, CONTRIBUTEURS EN MATERIA



 Rivières torrentielles calcaires bons contributeurs: Salauzon et Dardaillon-Nègue puissance moins importante mais roche plus facilement érodables

▲ Les SURFACES D'EROSION S

Les **BANCS DE GALETS** (313 ¢ (95 %) dont 59 % en aval de la conf mobiles (61 %)

L'Escoutay présente une bonn

Une fourniture limitée

LE RESUME DU DIAGNOSTIC

- ▲ La recharge sédimentaire est insuffisante
 - L'érosion latérale est relativement importante mais n'est pas la source sédimentaire principale
 - La connexion versant-lit est limitée du fait de la végétalisation
 - Les **contributeurs sédimentaires** (affluents fournisseurs de matériaux) importants sont concentrés en aval et insuffisants en amont
 - Le **stock alluvial** (volume de matériaux) est conséquent mais essentiellement concentré (60 %) dans la bande active de stockage
- ▲ La **Divagation latérale** (aussi appelée respiration latérale) est limitée (aval de Saint-Thomé dans la bande active de stockage)
- Le **lit est incisé** sur 8 km et s'écoule sur 5,5 km sur la roche
- ▲ L'Escoutay va vers un **déstockage** probable de son stock dans le futur

FTUDE DU FONCTIONNEMENT

L = 2,9 km I = 5,0 % S = 1,11

Style: Monochenalisé Plancher alluvial: Néant Incision: Néant

Connexion versant-lit : Limitée Perturbateurs majeurs : 3

Corsetage: 26%

Contributeurs séd.: Néant Érosion latérale: 270 m²/km Stock alluvial: 670 m³

Volume potentiel: 1 500 m³/an

ESC_2

L = 5,8 km I = 1,5 % S = 1.10

ESC_1

Style : Monochenalisé avec écoulement

sur la roche-mère Plancher alluvial : Néant Incision : Importante

Connexion versant-lit : Limitée Perturbateurs majeurs : 24

Corsetage: 23%

Contributeurs séd. : Faibles Érosion latérale : 400 m²/km Stock alluvial : 32 140 m³ Volume potentiel : 25 000 m³/an ESC_3

L = 8,1 km I = 0,9 % S = 1,13

Style : Monochenalisé Plancher alluvial : Néant

Incision : ≈ -1 m

Connexion versant-lit : Limitée Perturbateurs majeurs : 12

Corsetage: 32%

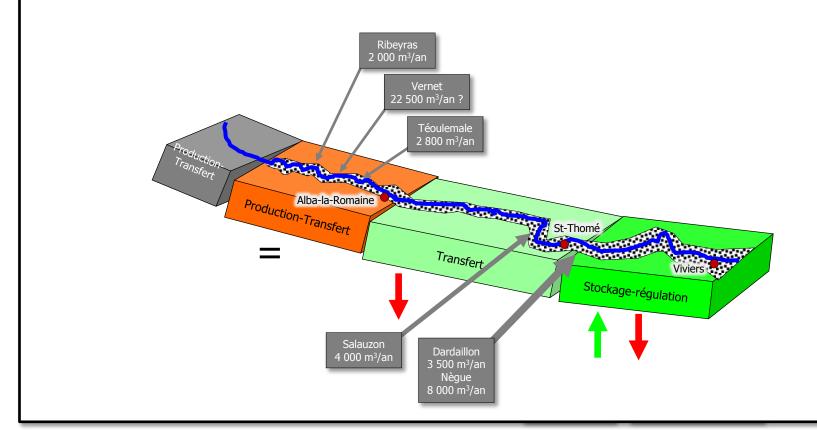
Contributeurs séd. : Moyens Érosion latérale : 730 m²/km Stock alluvial : 221 900 m³ Volume potentiel : 20 000 m³/an L = 6,3 km I = 0,6 %

S = 1,10

Style: Monochenalisé avec bande active

ESC_4

de stockage


Plancher alluvial : Néant

Incision: ≈ -1 m

Connexion versant-lit : Limitée Perturbateurs majeurs : 4

Corsetage: 28%

Contributeurs séd.: Importants Érosion latérale: 1 350 m²/km Stock alluvial: 360 380 m³ Volume potentiel: 15 000 m³/an

Des actions pour le long terme

Termes	Temps géomorphologique	Temps de gestion	
Court terme	10-100 ans	0-5 ans	Mandat
Moyen terme	1000-10 000 ans	5-10 ans	Programme
Long terme	100 000 ans et +	10-30 ans	Vision prospective

Eléments	Echelle de temps	Echelle spatiale
Evolution méandre	10 – 100 ans	10 ² m
Longueur d'onde des méandres	> 100 ans	10 ² m
Pente d'un tronçon	> 100 ans	10 ² – 10 ³ m
Pente profil en long d'un cours d'eau (incision)	> 1000 ans	10 ⁴ et + m

